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I.  INTRODUCTION 

The three-dimensional flow field equations are frequently simpli- 
fied for flow fields which are invariant in one coordinate direction. 
For example, in axisymmetric problems the pressure, density, and 
properly chosen velocity components do not change in the circumferential 
direction.  In the usual axisymmetric approximation the azimuthal 
velocity is assumed to be zero and the momentum equation in that 
direction can be eliminated.  Thus, only four equations are required 
to be solved for four unknowns. However, for a variety of interesting 
flow fields the velocity component in the invariant direction (here 
taken as n) is not zero although the governing equations are still two- 
dimensional.  Examples include axisymmetric swirl flows, the viscous 
flow about an infinitely swept wing, and the viscous flow about a 
spinning axisymmetric body at zero degrees angle of attack.  Each of 
these flows can be solved as a two-dimensional problem although all 
three momentum equations have to be retained and source terms replace 
the derivative of the flux terms in the n direction. 

In this paper the three dimensional thin-layer equations in 
general coordinates are presented.  These equations are then reduced 
to a two dimensional set of equations which govern azimuthal invariant 
flows. The resulting n-invariant equations still allow arbitrary body 
shape in the remaining (5,?) directions and are solved with an implicit 
approximate factorization finite-difference scheme.  Calculated results 
include flow about standard and hollow projectile shapes at zero angle 
of attack, flow over an infinitely swept wing, and an internal swirl 
flow with vortex breakdown. 

II.  GOVERNING EQUATIONS 

The azimuthal-invariant equations are developed as a subset of the 
three-dimensional thin-layer Navier-Stokes equations. The basic formu- 
lation of the three-dimensional equations is developed in reference 1 
and only the pertinent results are reviewed here. 

A.  Three-Dimensional Equations 

The transformed three-dimensional thin-layer Navier-Stokes 
equations in non-dimensional and strong conservation law form are 
written as1 

) q + 3,E + 9 F + 8 G = Re-^ S fl) 

T.  H.  Pulliam and J.  L.  Steger,   "On Impliait Finite-Difference 
Simulations of Three-Dimensional Flow",  AIAA Paper No.   78-10, 
January 1978. 



where general coordinate transformations 
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The velocities 

U=5^+5u+5v+5w 
t        x y z 

t        x y z 

t        x y z 

(2) 

represent the contravarient velocity components 

The Cartesian velocity components (u,v,w) are retained as the 
dependent variables and are non-dimensionalized with respect to a (the 

free stream speed of sounrf). Pressure is defined as 

p = (y - 1) (e - .5p(u2 + v2 + w2)) (3) 

where y  is the ratio of specific heats, the density (p) is referenced 
to p , and the total energy (e) is referenced to p a^2. The 

additional parameters are (K) the coefficient of thermal conductivity, 
(y) the dynamic viscosity, (Re) the Reynolds number, (Pr) the Prandtl 
number, and (A) which through the Stokes hypothesis is (-2/3)y. 

The metric terms of equation (1) are defined from 

E,    =J(yz -yz) rix = J(z^ -yet? 
E    =J(zx -xz) ny = J(x?z? - x?Zc) 
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J"1 = x^y zr +  x v-z + x y z_ - x^y^z - x y_z^ - x v z_ 



The "thin-layer" approximation1'2'3 used here requires that all 
body surfaces be mapped onto 5 = constant places and that Re >> 1. 
Essentially, all the viscous terms in the coordinate directions (here 
taken as C and n) along the body surface are neglected while terms in 
the Z  or the near normal direction to the body are retained. This 
approximation is used because, due to computer speed and storage limita- 
tions, fine grid spacing can only be provided in one coordinate 
direction (usually taken as the near normal direction) and the grid 
spacing available in the other two directions is usually too coarse to 
resolve the viscous terms. 

B.  n-Invariant Equations 

The thin-layer azimuthal-invariant equations are obtained from the 
three dimensional equations by making use of two restrictions:  (1) all 
body geometries are of an axisymmetric type;  (2) the state variables 
and the contravariant velocities do not vary in the azimuthal direction. 
Here n is used for the azimuthal coordinate and the terms azimuthal and 
n-invariant will be used interchangeably.  In what follows, the 

8 F term of equation (1) shall be reduced to the source term of the 

D-invariant equat ions. 

A sketch of a typical axisymmetric body is shown in Figure la.  In 
order to determine the circumferential variation of typical flow and 
geometric parameters, we first establish correspondence between the 
inertial Cartesian coordinates (x,y,z) (to which the dependent variables 
are referenced), the natural inertial cylindrical coordinates (x,(|),R), 
and the transformed variables (S,T1J?)> The choice of the independent 
variables 5, n> C is restricted, as shown in Figure 1c, insofar as n 
must vary as (J), i.e. $ = Cn (where C is a constant).  From the views 
shown in Figure 1, the relationship between the coordinate systems are 
observed to be 

(5) 

J. L. Stegev, "Implioit Finite Difference Simulation of Flow About 
Arbitrary Geometries With Appliaation to Airfoils'^ AIAA Paper No. 
77-665,  June 1977. 

B.   S.  Baldwin and H.  Lomax,   "Thin Layer Approximation and Algebraic 
Model for Separated Turbulent Flows",  AIAA Paper No.   78-257, 
January 1978. 
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where $ = <KT) an^  the Cartesian and cylindrical coordinates are 
related in the usual way. Note that x and R are general functions of 
only 5, Z,  and T. 

To evaluate the metric terms needed in Equation (1) we first form 

x? = x? 

x = 0 n 
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£ = Jd) RR n = 0 sx   Tri  5 x 

E  = JA Rx sind> n = COs4/(4 R) 
^y  Tn ? y      n 

5 = - J<|) Rx cose)) n = - sin$/C^ R) 

> (6) 

> (7) 

5  = - JA RRr P  = J(|) R(x R  - x R,.) 

C = Jcji^Rx^sinc}) ^t = " ^T^n 

?z = J*^^005* 5t = J(|)T1R(xTRc - RTxs) 

with 

J"1 = R^U^Rj. - x^R^) 

Once the term 3 F is evaluated in equation (1) we can eliminate the 

cylindrical coordinates altogether by letting (j) = 0 so that R = z (see 

11 



Figure 1), sin (j) = 0 and cos ^ ■ 1.  The term ^  is simply the scaling 

constant, C, between n and $. 

Equations (2) and (7) can be used to obtain the Cartesian velocity 
components in terms of the metrics and contravariant velocities 

u X5 
0 

\   ' 
"U - V 

R sin({> Rtj)  cosi R sinij) V - nt 

R cos<f) -R*  sirnt R cos())_ .W - 5t-l 

(8) 

The contravariant velocities, U, V, and W are required to be invariant 
in n and the metric terms 5 , n, and C are zero for steady flows and 

are invariant in n for such unsteady body motions as axial acceleration 
or axisymmetric spinning. 

The resulting expressions for u,v,w and the metrics, equation (7), 
have only sin $ and cos ^ variation in the n-direction. Consequently, 
equations (7) and (8) can now be used in equation (1) to reduce the n 

derivative of the flux vector, F. Taking, for example, the third term 

of the flux vector F 

pvv + n p 

and evaluating its ti derivative results in 

9v    ^V 

(9) 

R(t)2(V-nJsincj) + R (W-CJcos*] - psin^/R 

The remaining terms of 9 F are similarly determined and result in 

the following source term 

12 



H = J'H (10) 

0 

0 

pV[R (U-5t)cos(() - R* (V-nt)sin(|i 

+ R CW-5t)cos*] - psin(t./(R<|)r)) 

-pV[R (U-Ct)sin(i) + R(t) (V-nt)cos(|) 

+ R_CW-ct)sin*] - pcos^/CR*^) 

0 

Since the solution based on the above restrictions will be indepen- 
dent of ((), equation (10) can be evaluated at ^ = 0 without loss o£ 
generality. The resulting thin-layer n-invariant equations are then 
written as 

3 q + 3„E + 3 G + H = Re'^.S (ID 

with the metrics and Cartesian velocities in q, E, G, and S of equation 
(1) evaluated at (f) = 0°, and 

0 

0 

H = J"1^ 
pV[Rc(U-Ct) + Rc(W-?t)] 

■pVRcf) (V-nJ - p/(R<t>n) 

(12) 

Equation (11) contains only two spatial derivatives but does retain all 
three momentum equations thus allowing a degree of generality over the 
standard axisymmetric equations.  In particular, the circumferential 
velocity is not assumed to be zero. We remark that retaining all three 
momentum equations to compute crossflow components, such as swirl 
velocity, is not a noval idea; however, the form of the equations 
presented here is more general than what we have previously encountered. 

13 



C.  Surface Boundary Conditions 

For inviscid flow, the tangency condition is expressed as W = 0 
along the body surface, t, =  constant. A relation for pressure on the 
body surface is obtained by combining the three transformed momentum 
equations and making use of the n-invariant assumptions 

Pn^x2 + ^2)  = ^x?x + h^h  + C?x2 + ^2)P? 
= 

p[3   ^^  + u3   5    + V(J4  Rx_4  )   + w3   fJ4 Rxr)] (13) 

pUUxu? + ?zw?) + pVpx^R2^3^-^)] 

where p is the normal pressure gradient at the body surface. 

The no slip boundary conditions for viscous flow is enforced by 
setting 

U = V W 0 (14) 

where as usual it is assumed that the £, ri> X,  coordinates are referenced 
to the body. However, for an axisymmetric body spinning with angular 
velocity u, we have the choice of keeping the 5, Tii ? coordinates fixed 
in space and allowing the body to slide under the 5 = constant 
boundary surface.  In this case the no slip condition would be 

U W = 0 and V = a) (15) 

Otherwise, for a spinning body the usual no slip condition, equation 
(14), would be imposed with r\.   = ~fy  u. 

Once the contravariant velocities (U,V, and W) are specified at 
the body, the Cartesian velocities (u, v, and w) can be found from 
either equation (8) (with ^ = 0°) or from 

u 

w 

Vz 

L'Vx 

0 

«xVW 

-yv 

Vx 

-U-5t- 

v-nt 

L -ctJ 

(16) 
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D.  Turbulent Viscosity Model 

The turbulence model used in the program is that due to Cebeci but 
modified by Baldwin and Lomax3.  The Prandtl-Van Driest formulation of 
the inner eddy viscosity model requires the calculation of the vorticity 

l  |     Bu  9v\2   /9v  3w\2   /3w  9u\2 ri_, 
i^i = m-^l +\&-*y) +fe-W (17) 

Again, utilizing the relationships developed earlier, the vorticity term 
in transformed coordinates reduces to 

u v 
(18) 

2   /H 9v H ^C. lv\2 ^ /^£ 3v H ^_ 3v  3n^ 9w\2 

\9x 9^ + 9x 9?/ + ^9z 95 + 9z 9?  3y 911/ 

F/li 3w . 3£ 9w\  /95_ 9u + l£ 9u\' 
|_V9x 9? + 9x 9?/ " \dz   95 + 9z 9?/ 

III.  NUMERICAL ALGORITHM 

A fully implicit, approximately factored, finite difference 
algorithm in the delta form as analyzed by Beam and Warming4 is used 
here.  If the flow field conditions permit, the use of an implicit 
scheme can allow larger time steps over an explicit scheme.  Overly 
restrictive explicit stability limits can be encountered with the fine 
grids required for flow resolution in viscous regions or in the vicinity 
of abrupt geometry changes. 

The finite difference algorithm can be first or second order 
accurate in time and second or fourth order accurate in space. The 
solution of the two-dimensional system of difference equations is 
implemented by an approximate factorization of the equations into two 
one-dimensional-like systems of equations. This procedure has been 
utilized in previous applications1 3,5 similar to ours, and the 
bibliographies of references 1-5 should be referred to for numerous 
related works. 

4. R.  Beam and R.   F.   Warming,   "An Implicit Factored Scheme for the 
Compressible Wavier-Stokes Equations",  AIAA Paper No.   77-645, 
June 1977. 

5. P.  Kutler,  S.  R.   Chakravarthy}  and C.  K.  Lombard,   "Supersonic Flow 
Over Ablated Nose Tips Using an Unsteady Implicit Numerical 
Procedure",  AIAA Paper No.   78-212,  January 1978. 

15 



A. Finite Difference Equations 

The resulting finite difference equations, written in delta form 
are 

(I+h6 A n-e J^V A J) (I+h6 Cn-e J W A J 

- hRe l&  J"1^) x (in+1-qn) = -At(6 En+6 Gn (19) 

Re'lfi^S11) - AtHn - ^j"1 [(V^A^)2 * (V?A?)
2] Jq" 

Here h = At because only first order accuracy in the time differencing 
is needed for the steady and quasi-steady state flows which are 
considered in this paper.  The 6's represent second or fourth order 
central spatial difference operators1'2, with A and V the conventional 
forward and backward differences, respectively. The Jacobian matrices 

A = —r  , C = —r   along with the coefficient matrix M obtained from the 
9q      3q 

local time linearization of S are described in detail in reference 1. 
Fourth order explicit (ec) and implicit (e ) numerical dissipation 

h 1 
terras are incorporated into the differencing scheme to control non- 
linear instabilities. A typical range for the smoothing coefficients 
is eF = (1 to 5) At with Ej = 2 £_. 

B. Numerical Irapleraentation of Boundary Conditions 

For inviscid flow updated values of q are obtained along the body 
surface by linear extrapolation of p, U, and V.  In viscous flow U, V, 
and W are specified and we typically set p = 0. Once the contra- 

variant velocities are specified, equation (16) is solved for u, v, 
and w along the body surface. Pressure is obtained from numerical 
integration of equation (13). The axis singularity is handled as in 
reference 1, where flow variables are not required at the axis due to 
the fact that the required flux vectors are zero on the singularity. 
Extrapolated outflow conditions are applied although pressure is often 
fixed at the back boundary for subsonic flow. All boundary conditions 
are treated explicitly. 

16 



IV.  RESULTS 

The n-invariant equations are applied to a number of axisymmetric 
and planar type flow problems. Although the usual two-dimensional 
equations5 would be more appropriate for simple non-spinning axisym- 
metric bodies, we began, nevertheless, to verify the n-invariant code 
by computing conventional axisymmetric flows.  It happens that some of 
the axisymmetric results are interesting by themselves, specifically 
the hollow projectile solutions, and various calculations are presented 
to show the versatility of the numerical algorithm with its general 
geometry capability. Viscous flow results for spinning projectiles and 
an infinite swept wing are included to show the utility of the 
n-invariant assumptions.  Finally, an inviscid internal swirl flow with 
vortex breakdown is investigated.  In all cases the same basic code 
was used with only minor modifications of the boundary conditions. 

A.  Standard Projectile 

In order to verify the n-invariant code, an inviscid flow about a 
typical projectile shape was investigated. The inviscid solution was 
obtained for a 3 caliber (i.e. 3 maximum body diameters) ogive nose, 
2 caliber center body and 1 caliber 7° boattail at M = .95 and zero 

angle of attack. The calculated pressure coefficient is compared in 
Figure 2 with the results obtained from an inviscid three dimensional 
small disturbance program for projectile-like flow fields, developed by 
Reklis, et al6.  The two results are in good agreement and clearly show 
the same shock patterns, both near the nose-cylinder and cylinder- 
boattail junctions. The grid for our calculations contained 60 longi- 
tudinal points in £, with clustering at the boattail, and 25 points in 
the radial (?) direction, with exponential stretching away from the 
body. 

For viscous flow calculations the original projectile grid was 
refined to 40 points in the ^-direction to obtain a very fine mesh near 
the body. The computed C distribution for laminar flow and free 

stream Reynolds number of 0.5 x 106 (based on body diameter) is shown 
in Figure 3, together with the previous inviscid results.  In the 
viscous flow the expansion and subsequent shock at the nose-cylinder 
junction are reduced, and the flow separates and reattaches on the 
boattail. As with the inviscid calculation, the wake of the viscous 
case was modeled as an attached sting. 

A major motivation for the development of the n-invariant code 
was to obtain the capability to compute flow fields about spinning 
projectile shapes.  Results presented in Figure 4 show the boundary 
layer profiles obtained for the projectile when spun at a representative 
non-dimensional spin parameter of coD/U = 0.11.  The body geometry and 

R.  P.  Reklis,   W.  B.  Sturek,  and F.  R.  Bailey,   "Computation of Tran- 
sonio Flew Past Projectiles at Angle of Attack", AIAA Paper No. 
78-1182,  July 1978. 

17 



viscous flow conditions are the same as for the previous case, while u 
is the angular velocity and D is the maximum body diameter.  For the 
specified Mach number of M = .95 this spin parameter would correspond 

to a 105 millimeter diameter projectile spinning at a rate of 2,900 
rev/min. The surface pressure distributions were practically identical 
for the spinning and non-spinning cases and even the streamwise 
velocity profile was essentially unaffected by the addition of this 
amount of spin. These results are substantiated in part by experimental 
data obtained by Kayser7. 

B.  Hollow Projectile 

Of current interest in shell design is the utilization of hollow 
projectiles which can be made to fly "flat" trajectories. Hollow 
projectiles can be considered as tubular or ring airfoils and must be 
spun in order to achieve in-flight stability. 

A series of computations about hollow projectile-like shapes at 
zero angle of attack were made to demonstrate the capability of the 
n-invariant code to calculate crossflow velocity components and general 
geometry shapes. The specific shape used for the computations was 
generated from a conventional NACA 64A006 airfoil rotated about a 
symmetry axis to form an axisymmetric cowl or ring airfoil as shown in 
Figure 5. The airfoil grid generation program of Sorenson and Steger8 

was used to form the computational mesh. 

Inviscid flow results are presented in Figures 6a, b, c, d, and e 
for M^ = 0.6, 0.7, 0.8, 0.9, and 1.2.  In all cases the pressure 
distribution is plotted for the internal and external surfaces. The 
flow remains totally subsonic for M =0.6 and as the free stream 

00 

Mach number is increased the flow becomes choked at the throat with a 
shock standing inside (Figure 6b). As the free stream Mach number is 
further increased the internal shock moves to the trailing edge 
(Figures 6c and 6d).  At M^ = 1.2 a standing bow shock is formed in 

front of the tubular airfoil as shown in Figure 7. The solid line 
indicates the bow shock and the dashed lines represents the sonic line. 
A plot of the pressure distribution along the axis is also shown for 
this case in Figure 8. 

7. L.  D.  Kayser,   U.S.  Army Ballistic Eesearah Laboratory,  Aberdeen 
Proving Ground,  Maryland.     Private corrmunioation. 

8. R.  Sorensen and J.  L.  Steger,   "Simplified Clustering of Nonortho- 
gonal Grids Generated by Elliptic Partial Differential Equations", 
NASA TM 73252. 
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Prior to spinning the projectile, a viscous, turbulent thin layer 
solution was calculated at M =0.8 for comparison to the inviscid 

flow. In the viscous flow the shock wave moves back from the trailing 
edge, and a small separation bubble forms at the foot of the shock, as 
indicated in Figure 9. 

A spinning solution was obtained for the same shape at M^ = 0.8, 

zero angle of attack, and with a spin parameter wD/U^ = 0.11.  The 

velocity profiles are presented in Figure 10 at an external position 
of x/c = .33. As for the standard projectile, the v component of 
velocity shown here decreases from a maximum value at the surface to 
effectively zero at the edge of the boundary layer.  The pressure 
distributions were also unchanged between the spinning and non-spinning 
cases. 

C.  Infinite Swept Wing 

The flow about an infinitely swept wing is another well known 
example of an n-invariant flow where the n coordinate is chosen parallel 
to the wing leading edge as shown in Figure 11a.  For inviscid flow one 
can use simple sweep theory to convert the flow over an infinitely swept 
wing into a conventional two dimensional airflow problem.  In viscous 
flow, however, one finds that the streamlines over the wing are curved, 
hence the cross flow momentum equation must be retained (see refer- 
ences 9 and 10 for representative boundary layer procedures). 

The n-invariant equations for an infinitely swept wing are most 
easily obtained by considering this problem as a limiting case of the 
hollow projectile.  From this point of view we consider the flow about 
a ring airfoil with R •*• " and di ->- 0. As R -> «> and A ->- 0, the term 

R(fi ->■ 1 and the entire source term H ->- 0, see equation (12) . 

A turbulent calculation at Re = 20 x 106 about a NACA 0010 cross 
sectional wing with 45° sweep, a = 0°, and M^ = 0.85 is compared with 

an inviscid small perturbation solution obtained with the Bailey- 
Ballhaus11 three dimensional wing program as shown in Figure lib. 

9.    A.  Mager,   "Theory of Laminar Flows",   Vol.  IV, High Speed Aero- 
dynamias and Jet Propulsion,  F.  K.  Moore,   ed.,  Princeton University 
Press,  Princeton,  New Jersey,   1964. 

10. F.  A.  Dvorak and F.  A.   Woodward,   "A Viscous/Potential Flow Inter- 
action Analysis Method for Multi-Element Infinite Swept Wings", 
Vol.   1,  NASA CE-2476,  November 1974. 

11. F.R.  Bailey and W.   F.  Ballhaus,   "Comparison of Computed and Experi- 
mental Pressures for Transonic Flow About Isolated Wings and Wing- 
Fuselage Configurations",  NASA CP-347,  March 1975. 
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(While an inviscid two-dimensional airfoil program could have been used 
for this comparison, the three-dimensional result was available from 
another application.)  For this case viscous effects are somewhat mild, 
but even so, a discrepancy between the inviscid and viscous solution 
is evident from the trailing edge up to approximately the mid-chord. 

D.  Internal Swirl Flow 

As a final application of the n-invariant equations we have under- 
taken preliminary calculations to simulate the inviscid vortex break- 
down of an internal swirling jet flow. After an axisymmetric vortex 
flow bursts, the flow field may remain essentially axisymmetric or it 
may spiral in a non-axisymmetric manner (see Hall-1-2 or Leibovich13 for 
interesting review articles).  Of course, only axisymmetric flows can 
be properly simulated with the n-invariant equations. 

In our preliminary calculations we have attempted an inviscid 
simulation of the experimental measurements due to Garg14.  Garg studied 
the breakdown of a swirl flow in an expanding axisymmetric channel 
which has an inlet radius of 1.905 cm and which expands to 2.54 cm over 
an axial distance of 25.4 cm. The circular channel then continues on 
with the maximum radius of 2.54 cm for another 35 cm. The measured 
initial velocities were least squares fit and in our simulations we 
chose Garg's first case 

u = 23.8 (1 + 1.581 e-8-92 Z )     (cm/sec) 

v = 20.2 (1 - e'8,92 Z ) / z      (cm/sec) 

12.    M.   G.  Ball,   "Vortex Breakdown"}  Annual Review of Fluid Meahanios, 
Vol.   43 Annual Reviews3  Inc., Palo Alto,  California,  1972. 

12.     S.  Leibovich,   "The Structure of Vortex Breakdown",  Annual Review 
of Fluid Mechanics,   Vol.  10, Annual Reviews,  Inc.,  Palo Alto, 
California,   1978. 

14. A. K. Garg, "Oscillatory Behavior in Vortex Breakdown Flows: An 
Experimental Study Using a Laser Doppler Anemometer", MS Thesis, 
Cornell University,  Ithaca,  New York,   1977. 
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In the experiment, which was conducted in water, this case exhibits 
an axisymmetric bubble type breakdown with an axial stagnation point at 
approximately 2.3 cm downstream of the inlet (x = 0.0).  In the 
numerical simulation the initial velocity profiles were scaled to put 
u at the outer wall in a Mach number range of M = 0.2.  The axial core 
has a higher Mach number and some compressibility effects are observed 
in our calculations. 

Results of the numerical simulation are presented in Figures 12 
through 14.  In Figure 12, axial (solid line) and circumferential 
(dashed line) velocity profiles are displayed for different axial 
locations. The axial jet flow and vortex profile at the initial 
station (x = 0.2 cm) are shown in Figure 12a. The axial flow deceler- 
ates and the vortex weakens in Figures 12b and 12c. Stagnation occurs 
at approximately x = 2 cm, which compares with an experimental value 
of x = 2.1 cm station. Figure 12d, while further downstream a strong 
reversed jet is observed. Figure 12e. Velocity vectors are shown in 
Figure 13 from x=0.2cmtox=3.6 cm. The region of reversed flow 
continues downstream to the end of the tube. 

Pressure along the centerline of the axisymmetric channel is shown 
in Figure 14. The large adverse pressure gradient occurs right at 
breakdown.  It should be pointed out that pressure was allowed to float 
at both ends of the tube, i.e. p = 0 at inflow and outflow. Fixing 

pressure at the inlet leads to an inconsistency, and, if pressure is 
arbitrarily fixed at outflow, a pressure wave propagates back and forth 
through the channel.  Because pressure is not specified, the computed 
pressure field is not unique. However, the velocity field does appear 
to be unique.  In a numerical experiment we added a constant to the 
pressure field shown in Figure 14. The steady state velocity field 
remained essentially unchanged as the equations were then integrated 
further in time.  If the flow were truly incompressible, a    ->- °°,  any 

constant could have been added to the pressure field (and boundaries) 
without changing the velocity field. 

V.  CONCLUSIONS 

A versatile azimuthal-invariant version of the thin layer Navier- 
Stokes equations has been developed.  Because of its general geometry 
capability, the same code has been used to compute the flow for 
standard and hollow projectile shapes, an infinitely swept wing, and 
internal swirl flows. Since the n-invariant code is a subset of the 
full three-dimensional version it can also be utilized as a relatively 
inexpensive tool for numerical algorithm development with subsequent 
implementation to the three-dimensional version. 
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